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Mixed states in a neural network model
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Mixed states that are symmetrically related to more than one pattern are shown to exist in the Gardner
model. Their retrievability and stability depend on the storage capacity of the network. We show that, under
certain conditions, these states are stable and they have properties similar to those of the mixed states of the
Hopfield model.@S1063-651X~98!50504-1#

PACS number~s!: 87.10.1e, 75.10.Nr, 75.50.Lk
tw
th
il
in

a
ea
n

ne
tiv
pa
ns
st
th
i

e
d
s
th

d

s
lu

al

n
th

he
el
ap
fin

-

ox-
te

ed

s
by
-

ng

d

tal
The Hopfield model@1,2# and the Gardner model@3# are
widely used in neural networks. The synapses in the
models are generated differently. The synapses in
Hopfield model are determined by the Hebbian rule, wh
the synapses in the Gardner model are found by maximiz
the storage capacity~see below! under the requirement of
desired input-output relation. Because of a number of app
ing features such as flexibility in statistical analyses a
large storage capacity, the Gardner model has become o
the important models. Both models have associa
memory: the models are capable of retrieving the stored
terns by a stimulus of partial information about the patter
The patterns in these models are stable states in the
space. In the Hopfield model there are additional states
are attractors but different from the stored patterns. Am
Gutfreund, and Sompolinsky@2# have shown that there ar
metastable mixed states that are simultaneously relate
more than one stored pattern. These metastable state
attractors and influence the dynamics of the network. For
Gardner model, one may ask:~1! Are there such mixed
states?~2! If there are such states, are they stable?~3! How
are these states related to the storage capacity of the mo
The aim of this paper is to address these questions.

Since a full analytical treatment turns out to be impo
sible, we resort to numerical methods. However, the evo
tion through the first time step has been treated analytic
by means of a dilution technique@4#. Our numerical and
analytical results show that mixed states exist in the Gard
model and that they have properties similar to those of
Hopfield model@2#.

In the Gardner model withN neurons,p patterns are re-
membered by the network when the condition

1

AN
j i

m(
j Þ i

Ji j j j
m.K>0 ~1!

is satisfied for alli ,i 51, . . . ,N and all m, m51, . . . ,p. A
symmetrical mixed state has the same overlap~Hamming
distance! with several patterns. In the Hopfield model, t
mixed state can be obtained analytically from a mean-fi
equation. However, in the Gardner model, no analytical
proach is known for obtaining such a state. Therefore we
the mixed statez from an initial statej8 that is defined by
the probability

p~j i8!5
1

n (
m51

n

d~j i82j i
m!, i 51, . . . ,N,1<n<p. ~2!
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Equation~2! means thatj8 is related ton patterns with the
same probability 1/n. The dynamics, when initiated withj8,
evolves to an equilibrium state that is the mixed statez for
the Gardner model. In Eq.~2!, n51 corresponds to a non
mixed state, which is the usual case discussed in@3,5#.

For studying the behaviors of states that lie in close pr
imity to j8, we consider the time evolution of a typical sta
S(t) that starts att close toj8. Its evolution is studied by
considering the Hamming distance~overlap! between one of
the n patterns ~e.g., j1) and the stateS(t), M (t)
5(1/N)( i

Nj i
1Si(t). It may be pointed out thatM (t)51/n

whenS(t)5j8. The overlap after one time step is obtain
by generalizing the evaluation of@5,6#

M ~ t11!5E
2`

1`

Pn~L! erfS nM~ t !L

A2$12@nM~ t !#2%
D dL ~3!

with

Pn~L!5K dS L2
1

AN
(
j Þ i

j i
1Ji j j j8D L

j8,j

, ~4!

where^•••&j8,j is the average overj8 andj. After taking the
average overj8, the sum in Eq.~4! can be expressed as

(
m51

n
1

AN
j i

1(
j Þ i

~m!

Ji j j j
m , ~5!

where,( j Þ i
(m) contains only the terms related tojm and totally

it hasN/n such terms. The sum( j Þ i
(m) can be understood a

the corresponding quantity of a diluted network obtained
cutting randomlyN@121/(n)# synapses connecting to neu
ron i ~in the fully connected network, the neuroni has N
21 synapses!. Becausej i

m561, j i
1 in Eq. ~5! can be re-

placed byj i
m with possible changes of sign, after consideri

all possible relations amongj i
1 ,j i

2 , . . . ,j i
n . Hence, the sum

in Eq. ~5! has the form ofX16X26•••6Xn with

Xm5
1

AN
j i

m(
j Þ i

~m!Ji j j j
m , m51, . . . ,n. ~6!

The relation that bringsl minus signs to the sum is describe
by a random walk procedure in which there arel steps walk-
ing toward the negative direction, after a movement of to
n21 steps. Equation~4! thus reads
R3739 © 1998 The American Physical Society
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Pn~L!5
1

2n21(l 50

n21 S n21
l D ^d@L2 f l~X1 ,X2 , . . . ,Xn!#&j ,

~7!

where, f l(X1 ,X2 , . . . ,Xn) is the algebraic sumX16X2
6 . . . 6Xn with l minus signs. The distribution̂ d@L
2 f l(X1 ,X2 , . . . ,Xn)#&j can be obtained by

^d@L2 f l~X1 ,X2 , . . . ,Xn!#&j

5E
2`

1`F )
m51

n

dXmPm~Xm!G
3d@L2 f l~X1 ,X2 , . . . ,Xn!#, ~8!

wherePm(Xm) is just the distribution ofXm in a quenched
diluted network@4#, whereN2(N/n) out of the totalN21
synapses have been removed randomly from every neur

Figure 1 gives the overlapM (t1s) as a function ofM (t)
after different time stepss for n53. The solid line is the
analytical result fors51, while the circles, the squares an
the triangles are the results of simulation after 1, 5, and
steps, respectively. The analytical and numerical overlaps
ter one step agree well. The overlap after one time step p
an important role in a saturated network@5#. Starting from
j8, after a certain number of time steps, the equilibrium st
z is obtained when there is no more change in the over
Table I shows the overlapM3 @M35 lims→`M (t1s)# of the
mixed state forn53 and variousK. For n52,4,5, . . . , we
obtained similar results.

In addition, we find an asymptotic maximum value 0.5
M3 for largeK. In fact, such values~denoted byMn

0) exist
for all n. After some algebra to simplify the distribution o
Eq. ~8! for largeK, Mn

0 is obtained from Eq.~3! as

FIG. 1. The evolution of overlapM (t) for n53 at K52. The
solid line is the result of analytical treatment.

TABLE I. The overlap ofz with patternj1 for n53.

K 1 2 3 4 5 10

M3 0.28 0.35 0.39 0.45 0.48 0.5
n.

0
f-
ys

e
p.

f

Mn
05

1

2n S n
n

2
D , n5 even ~9!

and

Mn
05

1

2n21 S n21
n21

2
D , n5 odd. ~10!

These values coincide with those of the Hopfield model@2#.
This provides evidence of similarity in structures of th
mixed states of these two models.

Let us see now if the state is stable. The overlap, a
long enough time, reaches an equilibrium value that alo
does not provide information about its stability. Hence w
turn to a suitable order parameter. According to the dyna
ics

Si~ t11!5 sgnS 1

AN
(
j Þ i

Ji j Sj~ t !D
5Si~ t ! sgnS 1

AN
(
j Þ i

Si~ t !Ji j Sj~ t !D , ~11!

spin Si(t) flips if ( j Þ iSi(t)Ji j Sj (t),0, otherwise it stays
unchanged. Therefore, the distributionD(L)[^d(L
2( j Þ iz iJi j z j /AN)&j can be chosen as the parameter
judge the stability ofz. We find that whenn52, D has
always a finite value in the region ofL<0 for all K. There-
fore, there are flips of a fraction of spins and this statez is
not stable. Figure 2~a! gives the distributionD(L) for n
52 atK51 and 10. Even for very largeK ~e.g.,K510), the
distribution is not zero forL<0. This conclusion is also
valid for evenn. For n53, we observe that the distributio
is located at positiveL, whenK is large enough. Figure 2~b!
shows the distribution forn53. WhenK51.3 ~correspond-
ing to the storage capacitya50.4), D exists also forL<0;
when K57, the distribution resides only in the positiveL
region. The critical values ofK ~denoted byKc) are deter-
mined numerically and are presented in Table II. Thusz is
stable whenK.Kc . This property can be generalized for a
odd n, showing a similarity with the Hopfield model@2#.

The different behaviors with evenn and oddn may be
explained by considering the distributionPn(L) of Eq. ~7!,
which has maximal value atL50 for evenn when K is
large. On the other hand, for oddn the maximum is reached
at LÞ0. With the dynamics, the distributionPn(L) evolves
to D(L) indicating a dynamical dependence ofD(L) on
Pn(L). From Eqs.~7!,~8! and simulation results we observ
that for evenn there is a large number of spins~neurons! that
maximize Pn(L) near L50. It is likely that this leads to
nonzeroD(L) aroundL50. In the case of oddn, however,
there are fewer spins to provide nonzeroPn(L) nearL50.
This is perhaps the reason for zeroD(L) at L50.

TABLE II. The critical values ofK versusn.

n 3 5 7

Kc 5.5 8 10
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The statesz for odd n have a retrievability~attractor ba-
sin!, whenK.Kc . Their behavior can be shown clearly b
introducing an overlap,Q(t)51/N( i

Nz iSi(t), betweenz and
a stateS that is initially nearz. Figure 3 gives the evolution
of the overlap forn53. After some steps (s520 in Fig. 3!
the overlap reaches an equilibrium value forK.Kc , while
for K,Kc there is no equilibrium value. In many cases
K,Kc , we observe two values appearing alternatively a
one time step. That means there are two states,z1 and z2,
which are reached from the same initial states with a cy
z1→z2→z1→•••. We point out that bothz1 andz2 have the
same Hamming distance with any one of then patterns. The
cyclic states are therefore organized in an ultrametrical w
@7#: they have the same macroscopical overlaps, but diffe
the organization of their components. The states are s

FIG. 2. The distributionD of state z for ~a! n52 at K51
~dashed line! and K510 ~solid line!; ~b! n53 at K51.3 ~dashed
line! andK57 ~solid line!.
A
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le
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rated by barriers that are related to the parameterK ~the
storage limita). The two branches~dashed and long dashe
lines in Fig. 3! of the overlap~corresponding to the two
states! at smallerK tend to get closer to the solid curve
larger K. Therefore, for oddn, z has a basin of attraction
depending onK as in the case of a single state and it form
a metastable state under the dynamics.

The Edwards-Anderson parameter@8,9#,

R5 lim
t→`

lim
N→`

1

N(
i

N

Si~ t8!Si~ t1t8! ~12!

which compares the configurations at a different time, c
also be introduced to study the stability of the states:R is 1
(,1), if the state is stable~unstable!. Using R we have
obtained the same results as discussed above.

In summary, we have shown both analytically and n
merically that mixed states exist in the Gardner model
neural networks. We have also shown that the stability
these mixed states depends on the storage capacity o
model and also on whethern is even or odd. For every odd
n, the capacity has a critical value below which the states
stable. In many respects, these states are similar to thos
the Hopfield model.
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FIG. 3. The evolution of overlapQ(t) for n53 atK51.3 ~long
dashed lines!, K51.5 ~dashed lines!, andK55.7 ~solid line!.
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