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Mixed states in a neural network model
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Mixed states that are symmetrically related to more than one pattern are shown to exist in the Gardner
model. Their retrievability and stability depend on the storage capacity of the network. We show that, under
certain conditions, these states are stable and they have properties similar to those of the mixed states of the
Hopfield model[S1063-651%98)50504-1

PACS numbd(s): 87.10+e€, 75.10.Nr, 75.50.Lk

The Hopfield mode[1,2] and the Gardner modgB] are  Equation(2) means that’ is related ton patterns with the
widely used in neural networks. The synapses in the tw@ame probability 1. The dynamics, when initiated witf,
models are generated differently. The synapses in thevolves to an equilibrium state that is the mixed stafer
Hopfield model are determined by the Hebbian rule, whilethe Gardner model. In Ed2), n=1 corresponds to a non-
the synapses in the Gardner model are found by maximizinghixed state, which is the usual case discussda®,l.
the storage capacitisee below under the requirement of a For studying the behaviors of states that lie in close prox-
desired input-output relation. Because of a number of appealmity to &', we consider the time evolution of a typical state
ing features such as flexibility in statistical analyses ands(t) that starts at close to¢’. Its evolution is studied by
large storage capacity, the Gardner model has become one @bnsidering the Hamming distanéaverlap between one of
the important models. Both models have associativehe n patterns (e.g., &%) and the stateS(t), M(t)
memory: the models are capable of retrieving the stored paE(llN)EiNgilsi(t). It may be pointed out thai(t)=1/n

terns by a stimulus of partial information about the patternsyhen S(t) = £'. The overlap after one time step is obtained
The patterns in these models are stable states in the stagig generalizing the evaluation §%,6]

space. In the Hopfield model there are additional states that

are attractors but different from the stored patterns. Amit, Foo
Gutfreund, and Sompolinski2] have shown that there are M(t+1)=f P,(A) erf
metastable mixed states that are simultaneously related to ’°°

more than one stored pattern. These metastable states areth

attractors and influence the dynamics of the network. For the”!

Gardner model, one may askl) Are there such mixed

statesq2) If there are such states, are they stali®?How P.(A)={ 6 A— iz £ & (4)
are these states related to the storage capacity of the model? " INF T ]

The aim of this paper is to address these questions. e

Since a full analytical treatment turns out to be impos-where(- - - ), . is the average ovef’ and¢. After taking the

sible, we resort to numerical methods. However, the evoluaverage ovet’, the sum in Eq(4) can be expressed as
tion through the first time step has been treated analytically

nM(t)A )
dA (3)
V2{1-[nM(t)]%}

by means of a dilution techniquig!]. Our numerical and n 1“‘)
analytical results show that mixed states exist in the Gardner > N > Jigl, 5
model and that they have properties similar to those of the #=t YN 7

Hopfield model[2].

(k) i
In the Gardner model with neuronsyp patterns are re- where, =%} contains only the terms related 6 and totally

membered by the network when the condition it hasN/n such terms. The surﬁ}’;)i can be understood as
the corresponding quantity of a diluted network obtained by
1 cutting randomlyN[1—1/(n)] synapses connecting to neu-
—5{‘2 Jjjél'>K=0 (1)  roni (in the fully connected network, the neurdorhasN
W= —1 synapses Becauset”=+1, &' in Eq. (5) can be re-
is satisfied for all,i=1,... N and allu, u=1,... p. A  Placed by£f with possible changes of sign, after considering
symmetrical mixed state has the same oveflgmming &l possible relations amongf &7, . .. &'. Hence, the sum

distancé with several patterns. In the Hopfield model, thein Eq. (5) has the form ofX; + X,* --- =X, with
mixed state can be obtained analytically from a mean-field

equation. However, in the Gardner model, no analytical ap- 1 () _
proach is known for obtaining such a state. Therefore we find XM—\/—Ngi’L; gl k=10 ©®)
the mixed state’ from an initial state¢’ that is defined by
the probability The relation that brings minus signs to the sum is described
1.0 by a random walk procedure in which there argeps walk-
AN S(E —¢&), i=1....Nlsn<p. (2 ing toward the negative direction, after a movement of total
P(&i) H;Z'l (& =& p- (2 n—1 steps. Equatio) thus reads
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fa) 2
04 b 82:; ] These values coincide with those of the Hopfield md@gl
As=20 This provides evidence of similarity in structures of the
mixed states of these two models.
Let us see now if the state is stable. The overlap, after
00,5 o1 o2 03 0.4 long enough time, reaches an equilibrium value that alone
M(t) does not provide information about its stability. Hence we
FIG. 1. The evolution of overlapi(t) for n=3 atk=2. The furntoa suitable order parameter. According to the dynam-
solid line is the result of analytical treatment. ICS
1
11l S(t+1)= Sg’(\/—ﬁ < Jijsj(t))
PH(A):FI:EO ( | )(6[A_f|(xl!x21 vxr'l):|>§y

@)

1
Si(t) sgr(\/—ﬁ 2 Si(t)Jiij(t)> (1D

j
where, f|(X;,X5, ... X,) is the algebraic sumX;*+X,
+ ...%X, with | minus signs. The distributiofsS[A  spin S(t) flips if =;.;S(t)J;;S;(t)<0, otherwise it stays

—f1(X1,Xz, ... Xp)1); can be obtained by unchanged. Therefore, the distributioD(A)=(5(A
—EjiigiJijgj/\/N))g can be chosen as the parameter to

(S[A—=F1(X1, Xz, « o Xn)D)e judge the stability of{. We find that whenn=2, D has

. always a finite value in the region df<0 for all K. There-

+oo fore, there are flips of a fraction of spins and this staie

:le a1 dXMPM(XM)} not stable. Figure @) gives the distributionD(A) for n

=2 atK=1 and 10. Even for very largé (e.g.,K=10), the

XO[A—F (X1, X5, ... Xp) ], (8)  distribution is not zero forA<0. This conclusion is also

valid for evenn. Forn=3, we observe that the distribution
L o ) is located at positivé\ , whenK is large enough. Figure(3)
whereP,(X,) is just the distribution oiX,, in a quenched g5y the distribution fon=3. WhenK = 1.3 (correspond-
diluted network[4], whereN—(N/n) out of the totalN—1 ing to the storage capacity=0.4),D exists also forA <0
synapses have been removed randomly from every neuronypen i =7, the distribution resides only in the positive

Figure 1 gives the overlawl(tﬂ:s) as afunction oM(t)  e5ion The critical values ok (denoted byK,) are deter-
after different time steps for n=3. The solid line is the mined numerically and are presented in Table II. Thts

analytical result fos=1, while the circles, the squares and a6 wWherk > K, . This property can be generalized for all
the triangles are the results of simulation after 1, 5, and Zéddn showing a similarity with the Hopfield modg2].

steps, respectively. The analytical and numerical overlaps af- The different behaviors with even and oddn may be
ter one step agree well. The overlap after one time step playéxplained by considering the distributidt,(A) of Eq. (7)

an important role in a saturated netwdi. Starting from which has maximal value ah =0 for evenn when K is’
&', after a certain number of time steps, the equilibrium Stat(farge. On the other hand. for oddthe maximum is reached
¢ is obtained when there is no more change in the overlapatA#O_ With the dynamics, the distributio®,(A) evolves
Ta_lble | shows the overlapl, [.M3:|'msﬂ°°M(t+S)] ofthe 4, D(A) indicating a dynamical dependence B{A) on
mixed state fom=3 and variou. Forn=245..., we P,(A). From Eqgs.(7),(8) and simulation results we observe

obtl?]lr;%%_imlIareref_snudltz.n asvmptotic maximum value 0.5 ofthat for evem there is a large number of spifiseuron$ that
fhon, we Tl ymptot Ximum vaiue ©. maximize P,(A) nearA=0. It is likely that this leads to

M for large K. In fact, such valuesdenoted byMy) exist nonzeroD(A) aroundA =0. In the case of odd, however,
for all n. After some algebra to simplify the distribution of oo are fewer spins to provide nonz@g(A) nearA =0.
Eq. (8) for largeK, My is obtained from Eq(3) as This is perhaps the reason for zédgA) at A=0.

TABLE |. The overlap of{ with patterné! for n=3. TABLE II. The critical values ofK versusn.

K 1 2 3 4 5 10 n 3 5 7
M3 0.28 0.35 0.39 0.45 0.48 05 K¢ 55 8 10
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or rated by barriers that are related to the paramétefthe
> storage limita). The two branche&ashed and long dashed
a 1 lines in Fig. 3 of the overlap(corresponding to the two
o state$ at smallerK tend to get closer to the solid curve at
05 - - larger K. Therefore, for odch, ¢ has a basin of attraction
i depending orK as in the case of a single state and it forms
i H a metastable state under the dynamics.
, v (b) The Edwards-Anderson paramef8r9],
0.0 . :
5.0 0.0 5.0 10.0 15.0 1 N
() A R=1lim lim =2, S(t)S(t+t’) (12)
FIG. 2. The distributionD of state{ for (a) n=2 atK=1 teeN—eeN T

(dashed ling and K= 10 (solid line); (b) n=3 at K=1.3 (dashed ) ] ] ) )
line) andK =7 (solid line). which compares the configurations at a different time, can

also be introduced to study the stability of the stafess 1
(<1), if the state is stabléunstable¢. Using R we have
obtained the same results as discussed above.

In summary, we have shown both analytically and nu-
merically that mixed states exist in the Gardner model of
neural networks. We have also shown that the stability of
these mixed states depends on the storage capacity of the
model and also on whetheris even or odd. For every odd

for K<Kc there is no equilibrium value. In many cases of the capacity has a critical value below which the states are
K<K,, we observe two values appearing alternatively aftel pacity I
stable. In many respects, these states are similar to those of

one time step. That means there are two statesnd ¢,, .

which are reached from the same initial states with a cyclethe Hopfield model.
{1— {,— {1— . We point out that botlf; and{, have the One of the author§Z.T.) would like to thank L. Schike
same Hamming distance with any one of thpatterns. The and the late B. Schwesinger for useful discussions and their
cyclic states are therefore organized in an ultrametrical waydvice. He is also grateful to S. Marculescu for his help. This
[7]: they have the same macroscopical overlaps, but differ imesearch was partially supported by a grant to M. K. Ali from
the organization of their components. The states are sep#he Defence Research Establishment, Suffield.

The stateg for odd n have a retrievabilityattractor ba-
sin), whenK>K_. Their behavior can be shown clearly by
introducing an overlapQ(t) = 1/NZ;NZ,S(t), betweery and
a stateS that is initially near{. Figure 3 gives the evolution
of the overlap fom=3. After some stepss& 20 in Fig. 3
the overlap reaches an equilibrium value forK_., while
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